The 2016 Nobel Prize in Physics was recently awarded “for theoretical discoveries of topological phase transitions and topological phases of matter“. The following animation shows one aspect of this research:
Picture a thin sheet of magnetic material, with each arrow representing a single atom and the direction of its “spin”. At the lowest energy, all the spins line up in the same direction. Add some energy, and you can get a “vortex” (left) and “antivortex” (right), which exist in a pair, remaining bound together.
But add even more energy and there is a critical level where the vortex and antivortex can separate. This is named the “Kosterlitz-Thouless transition” after two of the Nobel Prize awardees. It is a phase transition, meaning an abrupt change of state like the melting of ice into water at around 0°C or the evaporation of water into steam at around 100°C. (My summary is based on a very readable introduction.)
The vortex and antivortex almost have the appearance of being literal concrete particles moving to the left or right, however it is clear from the animation they are only emergent from patterns of atoms spinning around. There are many examples of such “virtual” or “emergent” particles in physics, which leads us to an intriguing video by MinutePhysics. (Speaking of abrupt transitions!)
The video describes virtual particles such as an electron “hole” which is simply a gap in an otherwise densely packed sea of electrons. It also describes emergent properties such as electrons behaving as if they had very different mass, charge, or spin, in certain circumstances. Hopefully you will enjoy the physics, or in the very least the spinning Lego models. 🙂