Connection forms and covariant derivatives

In the previous article I introduced Cartan’s connection 1-forms. It is interesting to express various covariant derivatives in terms of them. But firstly:

    \[ \boldsymbol\omega_\mu^{\hphantom\mu\nu} = \omega_{\mu\hphantom\nu\tau}^{\hphantom\mu\nu}\mathbf e^\tau, \qquad\qquad \boldsymbol\omega^\nu_{\hphantom\nu\mu} = \omega^\nu_{\hphantom\nu\mu\tau}\mathbf e^\tau, \]

simply from the definition of covector components. But to check anyway, contract both sides of either equality with \mathbf e_\sigma, to recover the defining formulae. It follows:

    \[ \nabla_\sigma\mathbf e_\mu = \langle\nabla_\sigma\mathbf e_\mu,\mathbf e^\tau\rangle\,\mathbf e_\tau = \omega_{\mu\hphantom\tau\sigma}^{\hphantom\mu\tau}\mathbf e_\tau. \]

To check: the first equality is just components of the vector `\nabla_\sigma\mathbf e_\mu‘. But can check it holds by contracting both sides with \mathbf e^\nu. Similarly for the covector gradients,

    \[ \nabla_\sigma\mathbf e^\nu = \langle\nabla_\sigma\mathbf e^\nu,\mathbf e_\tau\rangle\,\mathbf e^\tau = \omega^\nu_{\hphantom\nu\tau\sigma}\mathbf e^\tau = -\omega_{\tau\hphantom\nu\sigma}^{\hphantom\tau\nu}\mathbf e^\tau. \]

Now, \nabla = \mathbf e^\sigma\otimes\nabla_\sigma. Because: substitute \mathbf X into the left slot (in our convention) of both sides. The RHS becomes: \langle\mathbf e^\sigma,\mathbf X\rangle\nabla_\sigma = X^\sigma\nabla_\sigma = \nabla_{\mathbf X}, by linearity of this slot. Now, apply this identity to \mathbf e_\mu:

    \[ \nabla\mathbf e_\mu = \mathbf e^\sigma\otimes\nabla_\sigma\mathbf e_\mu = \omega_{\mu\hphantom\tau\sigma}^{\hphantom\mu\tau}\mathbf e^\sigma\otimes\mathbf e_\tau = \boldsymbol\omega_\mu^{\hphantom\mu\tau}\otimes\mathbf e_\tau. \]

And:

    \[\begin{split} \nabla\mathbf e^\nu &= e^\sigma\otimes\nabla_\sigma\mathbf e^\nu = \omega^\nu_{\hphantom\nu\tau\sigma}\mathbf e^\sigma\otimes\mathbf e^\tau = -\omega_{\tau\hphantom\nu\sigma}^{\hphantom\tau\nu}\mathbf e^\sigma\otimes\mathbf e^\tau \\ &= \boldsymbol\omega^\nu_{\hphantom\nu\tau}\otimes\mathbf e^\tau = -\boldsymbol\omega_\tau^{\hphantom\tau\nu}\otimes\mathbf e^\tau. \end{split}\]

The antisymmetric part of the covariant derivative is (one half times) the exterior derivative:

    \[\begin{split} d(\mathbf e^\nu) &= \boldsymbol\omega^\nu_{\hphantom\nu\sigma}\wedge\mathbf e^\sigma = \omega^\nu_{\hphantom\nu\sigma\tau}\mathbf e^\tau\wedge\mathbf e^\sigma = -\omega^\nu_{\hphantom\nu\sigma\tau}\mathbf e^\sigma\wedge\mathbf e^\tau \\ &= \omega_{\sigma\hphantom\nu\tau}^{\hphantom\sigma\nu}\mathbf e^\sigma\wedge\mathbf e^\tau. \end{split}\]

This is Cartan’s first structural equation! We have assumed a connection with no torsion.

Leave a Reply

Your email address will not be published. Required fields are marked *